Lecture 1 | Modern Physics: Special Relativity (Stanford)

Views:653279|Rating:4.86|View Time:1:49:24Minutes|Likes:2611|Dislikes:73
Lecture 1 of Leonard Susskind’s Modern Physics course concentrating on Special Relativity. Recorded April 14, 2008 at Stanford University.

This Stanford Continuing Studies course is the third of a six-quarter sequence of classes exploring the essential theoretical foundations of modern physics. The topics covered in this course focus on classical mechanics. Leonard Susskind is the Felix Bloch Professor of Physics at Stanford University.

Complete Playlist for the Course:

Stanford Continuing Studies:

About Leonard Susskind:

Stanford University Channel on YouTube:

this program is brought to you by Stanford University please visit us at stanford.edu this quarter we're going to learn about field theory classical field theory fields such as the electromagnetic field gravitational field other fields in nature which I won't name right now propagate which means they change according to rules which give them a wave-like character moving through space and one of the fundamental principles of field theory in fact more broadly nature in general is the principle of relativity the principle the special printless the the principle of special relativity in this particular case the principle of special relativity well let's just call it the principle of relativity goes way back there was not an invention of Einstein's I'm not absolutely sure when it was first announced or articulated in the form which I'll spell it out I don't know whether it was Galileo or Newton or those who came after them but those early pioneers certainly had the right idea it begins with the idea of an inertial reference frame now inertia reference frame this is something a bit tautological about an inertial reference frame Newton's equations F equals MA are satisfied in an inertial reference frame what is an inertial reference frame it's a frame of reference in which Newton's equations are satisfied I'm not going to explain any further what an inertial reference frame is except to say that the idea of an inertial reference frame is by no means unique a reference frame first of all was a reference frame in tale of a reference frame first of all entails a set of coordinate axes in ordinary space X Y & Z and you know how to think about those but it also entails the idea that the coordinate system may be moving or not moving relative to whom relative to whomever we sitting here or you sitting here in this classroom here define a frame of reference we can pick the vertical direction to be the z axis the horizontal direction along my arms here to be the x axis X plus that way X my X is minus in that direction and which one have I left out I've left out the y axis which points toward you from me so there are some coordinate axes for space XY and Z and I didn't this in addition to specify a frame of reference one also imagines that this entire coordinate system is moving in some way relative to you sitting there presumably with a uniform velocity in a definite direction if your frame of reference is an inertial frame of reference in other words if when you throw balls around or juggle or do whatever is supposed to do in an inertial frame of reference if you find yourself in an inertial frame of reference then every other frame of reference that's moving with uniform velocity relative to you now remember what uniform velocity means it doesn't just mean with uniform speed it means with uniform speed in an unchanging direction such a frame of reference is also inertial if it's accelerated or if it starts standing still and then suddenly picks up some speed then it's not an inertial frame of reference all inertial frames of reference according to Newton and also I think also Galileo Galileo was often credited with the idea but I never read enough of Galileo to know whether he actually had it or not neither did I read enough of Newtons they both wrote in languages that I don't understand what was I saying oh yes right according to both Newton and anybody else who thought about it very hard the laws of physics are the same in all inertial reference frames laws of physics meaning F equals MA the forces between objects all the things that we would normally call laws of nature or laws of physics don't distinguish between one frame of reference of and another if you want a kind of pictorial example that I like to use a lot when I'm explaining this to the children or to grownups I like to think about the laws of juggling there are very definite procedures that you train your body to do uh in order to be able to juggle balls correctly now you can imagine yourself being in a railroad car moving with perfectly uniform velocity down the x axis and trying to juggle do you have to compensate for the fact that the train is moving and for particular when you throw a ball up into the air that you have to reach over to the right to compensate for the fact that the train is moving to the left my left your right the answer is no you don't the laws of juggling are the same in every reference frame and every inertial reference frame whatever you do in one reference frame you do exactly the same thing and you'll succeed or fail depending on whether you're a good juggler or not but it will not depend on whether you're moving with uniform velocity so the laws of juggling are the same in every inertial reference frame the laws of mechanics are the same in every inertial reference frame the laws Newtonian laws of gravity are the same in every inertial frame according to Newton what about the laws of electrical phenomena well there there was a clash the clash had to do with Maxwell's equations Maxwell's equations were the field equations the field theory that governed the electromagnetic field and the way that it propagated and sent waves electromagnetic waves that we ordinarily call light or radio waves or so forth and the fundamental dilemma as you all know I'm sure you all know the fundamental dilemma was both according to well here was the dilemma Maxwell's equations said light moves with a certain velocity if you take the various constants that appear in Maxwell's equations and put them together in the right way you get the velocity of waves moving down an axis and that velocity comes out to be a certain number out of Maxwell's equations you have two choices one is to believe that Maxwell's equations are true laws of nature as good as any other laws of nature in which case the principle of relativity says they should be the same in every reference frame but if it follows from Maxwell's equations that the speed of light is three times ten to the eighth meters per second which is about what it is if it follows from Maxwell's equations that light moves that fast and if Maxwell's equations are laws of physics fundamental laws of physics and if the laws of physics are the same in every reference frame then the speed of light must be the same in every reference frame but that was very hard to swallow because if a light beam is going down that axis and you chase it and run along with it that lets say three-quarters of the speed of light then you want to see that light ray moving much more slowly than three times ten to the eighth meters per second relative to you on the other hand the light ray going in the other direction since you're sort of running into it you should see going even faster so all these possibilities could not simultaneously be correct that the laws of nature are the same in every reference frame and that Maxwell's equations are laws of physics in the same sense that Newton's laws of physics namely the same in every reference frame something had to give well the point was of course that they were good laws of nature and that they were the same in every reference frame the thing that had to give is our concepts of velocity space and time and how we measure velocity especially velocities were up which are up near the speed of light now I'm not going to spend the full amount of time that I did previously on the special theory of relativity that can be found on lectures from how long ago and there on the Internet I believe relativity and electromagnetism I think that was maybe about three quarters ago I've lost track yeah they're up there they're on the net and they're the lectures on relativity special relativity and electromagnetic theory we're just going to cut through it real fast we're going to cut through the basic ideas of relativity a little more mathematically than I would do if I were teaching it for the first time I teach it the first time I tend to teach it the way Einstein first conceived of it how do you measure distances how do you measure velocities how do how does the propagation of light influence these things instead I'm going to take a more mathematical view of it and think about the properties of various kinds of coordinate transformations coordinates now consists not only of XY and Z but also time T so imagine every event in the world is characterized by just like every particle would be characterized by a position x y&z every event taking place in space-time is characterized by four coordinates X Y Z and T let's suppress for the moment y&z let's just forget I forget them for the moment and concentrate on X and T that would be appropriate if we were mainly interested in motion along one axis let's focus on that motion along the x axis let's suppose there is no motion along y&z then we can forget y&z for the moment momentarily we'll come back to them and think of motion along X and T and the various reference frames that might be moving along the x axis alright here's here's time vertically is space horizontally physicists always draw space horizontally and time vertically I found out that mathematicians are at least certain computer scientists always draw time going horizontally I didn't know that and I got into an enormous argument with a quantum computer scientist which was ultimately resolved by the fact that he had time going horizontally and I had it going vertically these are traditions I guess traditions grow up around subjects but time is north and X is east I guess or at least time is upward yeah yeah yeah that's what that that that's the point that is the point yes they're thinking of time is the independent variable and everybody knows that it's a law of nature that the independent variable should be horizontal ok all right now let's in let's imagine a moving observer moving down the x axis with a velocity V let's take his origin of spatial coordinates his origin of spatial coordinates at time T equals zero is just the same let's assume that my I'll be the moving observer I move down the x-axis I am my own origin there's nobody who was your origin that seat is vacant over there so that absent a human over there is the center of the x-coordinates in your frame I'm the X prime coordinates and of course I being very egocentric will take my x-acto is origin to be where I am there I do I move down the x-axis we pass each other our origins pass each other at t equals 0 so that means at T equals 0 your axis and my axes are the same or your origin in my origin is the same but then as I move down the x axis my core my coordinate center moves to the right most of the right that's supposed to be a straight line that's as good as I can do under the circumstances that's a straight line and it's moving with velocity V which means it's X prime equals SR it means x equals VT but it's also that's the way you describe it in terms of your coordinates my centre you described by saying x equals VT how do I describe it I just say X prime my coordinate X prime is 0 X prime equals 0 is the same as x equals VT all right what's the relationship between X Prime and X and T well it's easy to work out if you believe this picture the X prime coordinate is the distance from my origin the x coordinate is the distance from your origin so one of these is X the other is X prime the upper one here is X prime the low and here is X and the relationship between them is that they differ by an amount VT in particular X is equal to X prime minus VT or X prime is equal to X plus VT will have it wrong yes I do X prime is X minus BT and X is X prime plus VT yeah I think I have that's correct now all right what about time itself well according to Newton and according to Galileo and according to everybody who came afterward up until Einstein time is just time is just time is just time there was no notion that time might be different in different reference frames Newton had the idea of a universal time sort of God's time God upon his cloud ticking off with his with his super accurate watch and that time was universal for everybody no matter how they were moving and so everybody would agree on what on the time of any given event in this map of space and time here and so the other equation that went with this is that T prime is equal to T let's forget the top equation here let's just forget it one might say that this was the Newtonian or the Galilean transformation properties between X and T your coordinates and the coordinates that I ascribe to a point in space-time now let's examine a light ray moving down the plus x axis if it starts at the origin here then it moves along a trajectory which is x equals CT C being the speed of light now shortly I'm going to set C equal to 1 we're going to work in units in which C is equal to 1 but not quite yet incidentally once you understand a bit of relativity working in coordinates in which C is not equal to 1 is about as stupid as using different units for x and y are if we used yards for x and feet for y then we will have all kinds of funny factors in our equations which would be conversion factors from X which is measured in feet to Y which is measured in our yards the cycle has its uses log scale has its uses no long skilling long scale well let common interest yep I'm not sure we good but okay I'm just saying it is quite often in practical circumstances that one uses different scales yeah you sometimes you might there might be a good reason I mean um it wouldn't be totally unreasonable for a sailor to use different units for horizontal direction and vertical direction hmm I mean he's used to moving around horizontally he might use what miles miles versus fathoms or something nautical miles versus paddles yeah Persian is relative but um when you talk about a frame of reference you need to specify a period of time because obviously goes that 15 billion years there is no yeah we're ignoring now the fact that the universe began at some time and we're imagining now as Newton did and as the early Einstein did that the universe has just been here forever and ever and ever unchanging totally static and space and time have properties which don't change with time now of course that's incorrect in the real world and at some point we will take up the subject of cosmology and find that's not right but as long as we're interested in time intervals which are not I suspect this is what you're getting at as long as we're interested in time intervals which are not too long in particular time intervals over which the universe doesn't expand very much and so forth we can mainly say the properties of space don't change over a period of time and so everything just stays the same as always was is that what you're asking it seems that that this assumption if it is made it needs to what you're describing so well so the question is without imagining to some point as it doesn't lead it doesn't lead to what I'm describing where is this this room for different formulas here this is a formula which is based on an assumption the assumption being that time is universal that's what Einstein found was wrong basically what he found is that when you're in a moving frame of reference to different the observers will not agree about what time a particular event takes place this is the culprit here this one and some modifications to this one but in any case to see what's wrong let's go to Maxwell's equations Maxwell's equations say that light always moves with this velocity C being some numbers in meters per second okay 3 times 10 to the 8th meters per second we will later as I said say C equals 1 let's imagine a light beam moving down the x axis let's describe how X prime sees it in other words you see the light move this way to the right how do I see the light well let's see what I see let's just work it out X prime will be X which is CT for that light ray minus VT which is the same as C minus VT all this says is that I see the light moving with a diminished velocity a velocity C minus V why is that because I'm moving along with the light so naturally I see it move slowly the slow compared to what you see it what about the light going in the other direction supposing it was a light beam going in the other direction then how would you describe it you would describe it as x equals minus CT and if I do exactly the same thing I will find that X prime is equal to X that's minus CT – VT which is the same as minus C plus V times T so what this says is that I will see the light moving also in the negative direction that's the minus sign but I'll see it moving with an enhanced velocity C plus V if this were the right story and if these were the right transformation laws for space and time then it could not be the case that Maxwell's equations are laws of physics or laws of nature in the sense that they were true in every reference frame they would have to be corrected in moving frames just like the juggler who had to reach to the right who didn't actually but who thought he had to reach to the right to collect the ball when train is moving the physicist interested in light beams would have to correct things for the motion of his reference frame now it's an experimental fact that this is not the case that you don't have to correct for motion was the famous Michelson Morley experiment Einstein he just rejected he just felt this can't be right Maxwell's equations were much too beautiful to be relegated to the approximate or to the contingent on which reference frame and so he said about to find a framework in which the speed of light would be the same in every reference frame and he basically focused on these equations and after various very very beautiful Gedanken experiments thought experiments about light and about measuring and so forth he came to a set of formulas called the Lorentz transformations I'm going to explain them the Lorentz transformations in a more mathematical way not fancy mathematics but just get we want to get right to the heart of it and not spend the three weeks doing it the best way is to a mathematical problem but before I do let me set up a different mathematical problem which is for most of you you've seen me do this before but nonetheless let's go through it again the problem of rotation of coordinates we're going to do this quickly let's just take spatial coordinates now for the moment two dimensional spatial coordinates let's forget X and T and just concentrate on X&Y two coordinates in space instead of events in space-time concentrate on a point in space a point in space has coordinates and we can determine those coordinates the x and y coordinates just by dropping perpendicular to the x axis in the y axis and we would describe this point as the point at position let's just call it X Y now there's nothing sacred about horizontal and vertical so somebody else may come along some crazy mathematician a really nutty one who wants to use coordinates which are at an angle relative to the vertical maybe a couple of beers and you don't know the difference between vertical and worth worth worth we should give this direction a name oblique yeah all right the oblique observer the blue observer can blue be seen everybody can see blue okay good ah the blue observer also characterizes points by coordinates which he calls X Prime and Y Prime the X Prime and the Y prime coordinates are found by dropping perpendicular to the X Prime and the Y prime axis so here's X prime is y prime and given a point X Y there's a role it must be a role if you know the value of x and y you should be able to deduce the value of X I'm in y-prime if you know the angle between the two coordinates between the x coordinate and the X prime coordinate and the formulas simple we've used it least in these classes many times I'll just remind you what it is that's X prime is equal to x times cosine of the angle between the two frames between the two coordinate systems minus y times sine of the angle and Y prime is equal to minus plus I think X sine of theta plus y cosine theta I just want to remind you about a little bit of trigonometry all of trigonometry is encoded in two very simple formulas I've used them this signs on these signs of are on the right let's Ella and X prime is bigger than X for small theta since ours here are all so it's Auto Expo Rhine is bigger than it is is it yeah let's see if you rotate it to the next so that y is y prime is zero it's further out X prime rook will have it backward yeah what's your gift I'm not gonna fit nobody so let's say just make sure the links take survive is the little perpendicular there no my life primary so that's y prime y prime is this is why I'm here right right that's why I'm in X prime is bigger than X so there has to be a plus sign on the second you know its prime is bigger than X let's see um yeah X prime is bigger than X yeah X prime is bigger than X looks like that's probably right probably sign but then this one must be man negative yeah okay there's an easy way to correct for it another way to correct for it just call this angle minus theta that would also do the trick because cosine of minus theta is the same as cosine of theta and sine changes sign when you change theta 2 minus theta so if instead of calling this angle theta I called it minus theta then my previous formulas would be right it's true true but the it's an excuse all right what do we know about sine and cosine it's important to understand sine and cosine everything you ever learned about trigonometry can be codified in two very simple formulas if you know about complex numbers the two very simple formulas are that cosine of theta is e to the I theta plus e to the minus I theta over 2 and sine of theta is e to the I theta minus e to the minus I theta over 2i those two formulas contain everything about trigonometry you don't have to know any other formulas other than these for example I will assign you the homework problem of using these two formulas to find cosine of the sum of two angles but the way you would do it is just write the sum of two angles in here and then reexpress the Exponential's in terms of cosine and sine that's easy to do e to the I theta is equal to cosine of theta plus I sine theta and e to the minus I theta is cosine of theta minus I sine theta so work through these formulas get familiar with them they're extremely useful formulas once you know them you will never have to remember any trigonometric formulas again the other thing to know is that e to the I theta times e to the minus I theta is 1 all right e to the anything times e to the minus the same thing is one those things characterize all trigonometric formulas in particular as was explained to me by Michael a number of times if we multiply e to the I theta times e to the minus I theta we will get one on this side but on this side we will get cosine squared of theta plus sine squared of theta naught minus sine squared but plus sine squared cosine squared and then ice minus I squared sine squared that gives us cosine squared plus sine squared cosine squared theta plus sine squared theta so that's equivalent to the fact that e to the I theta times e to the minus I theta is 1 all right now the most important fact that again follows from the simple trigonometry is that when you make the change of coordinates from XY to X prime Y prime something is left unchanged namely the distance from the origin to the point XY that's something which is you know you count the number of the molecules along the blackboard from here to here and that doesn't change when I change coordinates so the distance from the origin to the point XY has to be the same independent of which coordinate axes we use well let's take the square of that distance the square of that distance we know what it is let's call it s squared I'm not sure why I use s but s for distance s s for distance s for space I think it must be for space that I'm using it for the spaces for the spatial distance from the origin to the point XY we know what that is it's Pythagoras theorem x squared plus y squared but as I said there's nothing special about the XY axes we also ought to be able to calculate it as X prime squared plus y prime squared well it's not too hard to work out that X prime squared plus y prime squared is x squared plus y squared it's easy to use do X prime squared plus y prime squared will have x squared cosine squared theta it will also have x squared sine squared theta when you add them you'll get x squared plus y squared you know you know the rigmarole so it follows from cosine squared plus sine squared equals 1 that X prime squared plus y prime squared equals also equal is equal to x squared plus y squared work that out make sure that you have this on the control that you understand why from the trigonometry not from the the basic physics of it or the basic geometry of it is clear make sure that you understand that you can see that from the trigonometry okay one last thing about sines and cosines if I plot on the blackboard for every angle if I plot sine or cosine along the horizontal axis supposing I plot cosine of theta along the horizontal axis and sine of theta along the vertical axis then if I plot all possible angles they will correspond to a bunch of points that lie on a unit circle Y on a unit circle because sine squared plus cosine squared equals 1 so one might call the properties of sine and cosine the properties of circular functions circular in that they're convenient for rotating they're convenient for describing unit circles points on unit circles are described in terms of coordinates which are cosines and sines of angles and so forth it's natural to call them circular functions these are these are not the functions that come in to the transformation the new transformation properties first of all these are wrong and I don't want to use X what's X ya ya now just wrong Newton had it wrong Newton or Galileo however it was postulated who postulated it Einstein modified it now we're going to have to make sure that Einstein's modification doesn't change things in situations where Newton knew where Newton's equations were good approximations the situations where I'm Stan's modifications are important is when we're talking about frames of reference moving very rapidly up near the speed of light before the 20th century nobody or nothing had ever moved faster than a hundred miles an hour probably well of course some things did light did but for all practical purposes light didn't travel at all it's just when you turned on the switch the light just went on so light didn't travel nothing and anybody's experienced direct experience traveled faster than 100 or 200 miles an hour and well I should say nothing travels faster than 100 miles an hour and then live to tell about it so all of experience was about very slow velocities on the scale of the speed of light on the scale of such velocities newton's formulas must be correct they work they're they're very useful they work Nutan got away with it so there must be good approximations it better be that whatever einstein did to the equations in particular to these two equations here had been a reduced to newton's equations in the appropriate limit okay let's come back now to light light according to the Newton formulas doesn't always move with the speed of light but let's let's try to figure out what it would mean of a better formula of a replacement for this but light always moves with the speed of light first of all let's set the speed of light equal to one that's a choice of units in particular it's a choice of the relation between space units and time units if we work in our light years for spent for a distance and years for time then light moves one light year per year the speed of light is one if we use seconds and light seconds it's also one whatever whatever scale we use for space if we use for time the time that it takes light to go that distance one unit of space if we use that for time units then the speed of light is equal to one now from the ordinary point of view of very slowly moving things those are odd units but if we were electrons with neutrinos and whizzing around like photons they would be the natural units for us speed of light equals one so let's set the speed of light equal to one as I said it's just the choice of units and then a light ray moving to the right just moves along a trajectory x equals T C is just equal to one a light ray moving to the left is x equals minus T how can we take both of these equations and put them together sorry x equals minus T can I write a single equation which if it's satisfied is a light ray either moving to the left or to the right yes here's an equation x squared equals T squared it has two solutions x equals T and X equals minus T the two square roots or x squared equals T squared is equivalent to either x equals T or x equals minus T in other words this equation here has the necessary and sufficient condition for describing the motion of a light ray either to the right or to the left supposing we found a replacement for this equation which had the following interesting property that whenever let's let's write it this way X square minus T squared equals 0 this is even better for our purposes x squared minus T squared equals 0 that's the necessary and sufficient condition to describe the motion of a light ray supposing we found a new set of rules a new set of transformation properties which which um had the property that if x squared minus T squared is equal to 0 then we will find that X prime squared minus T prime squared is equal to 0 in other words supposing this implied this and vice-versa then it would follow that what the unprimed observer you and your seats see is a light ray the primed observer me moving along also see as a light ray both of us agreeing that light rays move with unit velocity now this doesn't work for Newton's formula here it just doesn't work if X is equal to T it does not follow that X prime is equal to the T prime in fact it says something quite different okay so the form of these equations must be wrong let's look for some better equations now at this point let's in fact let's even be a little bit more ambitious it turns out being a little bit more ambitious actually simplifies things let's not only say that when X square minus T squared is equal to zero then X prime squared minus T prime squared is equal to zero let's say something even bolder let's say the relation between XT and X prime T prime is such that x squared minus T squared is equal to X prime squared minus T prime squared in other words pick any X and any T and calculate X square minus T squared then take the same point except reckoned in the primed coordinates in other words we take a certain event a light bulb goes off someplace you say that corresponds to X and T I say it corresponds to X Prime and T Prime but let's require just to try it out see if we can do it let's look for transformations so that X square minus T squared will always be equal to X prime squared minus T's prime squared that would be enough to ensure that everybody will agree about the speed of light why if x squared minus T squared equals X prime minus T prime squared for all X and T and so forth then when X square minus T squared equals zero X prime minus T prime squared will be zero and then if this is a light ray so is this a light ready everybody get the logic ok good so let's assume now that let's ask can we find transformations which have this particular property now it's not so different from looking for transformations which preserve x squared plus y squared equals x prime squared plus y prime squared it's just a little minus sign other than a minus sign here X square minus T squared look of these two is very similar and the mathematics is quite similar here are the transformations which preserve x squared plus y squared what are the transformations which preserve x squared minus T squared well they are the Lorentz transformations they are the fundamental transformations of the special theory of relativity they're not this but they're closely related or perhaps one should say closely analogous to these equations here but we have to substitute for circular trigonometry hyperbolic trigonometry so let's go back and remember a little bit about hyperbolic functions instead of circular functions well I didn't want to erase that all right these are the basic rules governing circular functions cosine theta this sine theta is equal to this and the e to the I theta in terms of cosine and sine all right let's see if we have a yeah we do have a blank blackboard here let me write whoops what did I do here I erased something I didn't mean to erase incidentally does everybody see how I got this side from the side you just add and subtract the equations appropriately and you isolate it to the I theta e to the minus R theta that's elementary exercise alright hyperbolic functions what are hyperbolic functions alright those are functions of the form hyperbolic cosine cosh hyperbolic cosine first of all the angle theta is replaced by a variable called Omega which I will call Omega Omega is called a hyperbolic angle it doesn't go from zero to two pi and then wind around on a circle it goes from minus infinity to infinity goes from minus infinity to infinity so it's a variable that just extends over the entire real axis but it's defined in a manner fairly similar to cosine and sine cosh Omega is by definition you're not allowed to ask why this is definition e to the Omega plus e to the minus Omega over 2 all we do is substitute for theta or for Omega theta I theta substitute Omega and that gives you hyperbolic functions likewise or similarly there's the hyperbolic sine and that's given by e to the Omega minus e to the minus Omega over 2 essentially you throw away all eyes out of that formula out of the top formulas just throw away all Sun all eyes the equations on the right-hand side become e to the Omega equals hyperbolic cosh Omega plus sin Chi Omega and e to the minus Omega equals cosh so mega- cinch Omega I think that's right is it right gosh – cinch it is yeah it is right okay now what about the analog of cosine squared plus sine squared equals one that simply came by multiplying this one by this one so let's do the same operation multiplying e to the Omega by each by e to the minus Omega gives one and now that gives cosh squared minus cinch squared you see we're getting a minus what we want we want that minus the minus is important we want the well somewhere is under here was a formula with a minus sign yeah we want to get that – into play here that's cos Omega squared knockouts Prakash squared Omega minus sin squared Omega so it's very similar everything you want to know about hyperbolic trigonometry and the theory of these functions is called hyperbolic trigonometry everything you ever want to know is codified in these simple formulas these in these and they're more or less definitions but there are the useful definitions now yeah go ahead yeah not only is it worth mentioning I was just about to mention it so I squared minus y squared is what hyperbola yeah right exactly so if I were to play the same game that I did here namely plot on the horizontal and vertical axis the values not of cosine of theta and sine of theta but cosine cosine cosh of that of Omega and since Omega what's in other words on the x-axis now we're going to plot cos Omega and on the y-axis cinch Omega then this is a hyperbola not a circle but a hyperbola and it's a hyperbola with asymptotes that are at 45 degrees you can see let me show you why why the asymptotes are at 45 degrees when Omega is very large when Omega is very large then e to the minus Omega is very small right when Omega is very large e to the minus Omega is very small and that means both cosh and cinch are both essentially equal to e to the plus Omega in other words when Omega gets very big cosh and cinch become equal to each other and that's this line here cash equals cinch along this line here so when Omega gets very large the curve asymptotes to to a curve which is a 45 degrees it's not hard to see that in the other direction when Omega is very negative that that it asymptotes to the other asymptotic line here so that's why it's called hyperbolic geometry it the hyperbolic angle the hyperbolic angles the caches the cinches play the same role relative to hyperbolas as sines and cosines do two circles any questions No so cosh Omega equals zero how would you plot that hi purple okay show me hmm Oh cos squared minus sin squared equals zero no that's no no cos squared minus sin squared equals one in the same sense that sine squared plus cosine square it never equals zero I think what I think you want to ask a different question I think oh well since Omega equals zero is the horizontal axis the costume a equals zero is the vertical eyebrows right okay well this is the x-intercept yeah it's it's the vertex I just think here's one point on a minute oh man the x-intercept there is one yeah because Kostroma cost of zero is one to see that just plug one r 0 in here 1 plus 1 divided by 2 is 1 at least it was yesterday yeah stores okay so now we we're sort of starting to cook a little bit we're starting to see something that has that nice minus sign in it but what's it got to do with X and T and X Prime and T prime we're now set up to make let's call it a guess but it's a guess which is based on the extreme similarity between hyperbolas and circles cautions and cosines and so forth he is the guess I'm going to make and then we'll check it we'll see if it does the thing we wanted to do my formula instead of being this has gotten with and we're now going to have instead of x and y we're going to have x and t time and x later on we'll put back y&z we're going to have to put back y&z but they're very easy okay so let's start with X prime X prime is the coordinate given to a point of space-time by the moving observer namely me and I'm going to guess that it's some combination of X and T not too different but not the same as where is it X prime equals X minus VT I'm going to try cosh Omega X let's write X cos Omega minus T sin Omega sort of in parallel with this I could put a plus sign here but you can go back and forth between the plus and the minus by changing the sign of Omega just as you did here so this let's do it this way X cos Omega minus T sin Omega and T prime going to look similar but without the extra minus sign here this you know the relation between sines cosines and cautious and cinches is one of just leaving out an eye you go from sines and cosines the clashes and cinches by leaving out the I well if you track it through carefully you'll find that this minus sign was really an I squared it's not going to matter much I will just tell you it was really came from some I squared and if you leave out I I squared just becomes one squared is no minus sign so here's the guess for the formula connecting X prime T Prime with X and T it equals let's say X since Omega – no – plus T cos Omega in this case there are two minus signs in this case there was only one minus sign okay but but let's check what do we want to check we want to check that X prime squared minus T prime squared is equal to x squared minus T squared your ask you're probably asking yourself what is this Omega what does it have to do with moving reference frames I'll tell you right now what Omega is it's a stand-in for the velocity between the frames we're going to find the relationship between Omega and the relative velocity of the reference frames in a moment there has to be a parameter in the lower end these are the lines in these are the Lorentz transformations connecting two frames of reference in the Lorentz transformations as a parameter it's the velocity the relative velocity that parameter has been replaced by Omega it's a kind of angle relating the two frames a hyperbolic angle but we'll we'll come back to that for the moment let's prove that with this transformation law here that X prime squared minus T prime squared is equal to zero ah is equal to X square minus T squared I'm getting to that point in the evening where I'm going to make mistakes all right this is easy you just work it out you use all you have to use is that cosine squared minus sine squared is 1 you can work that out by yourself but we can just see little pieces of it here X prime squared will have x squared cos squared Omega t prime squared will have x squared sin squared Omega if I take the difference between them I'll get a term with an x squared times cos squared minus sin squared but cos squared minus sin squared is one fine so we'll find the term with an x squared when we square take the square of the difference between the squares of this and this and likewise will also find the T squared the cross term when you square X Prime you'll have XT cost cinch when you square T Prime you'll have XT costs inch when you subtract them it'll cancel and it's easy to check that's our basically one liner to show that with this transformation here x prime squared minus T's prime squared is x squared minus T squared which is exactly what we're looking for let me remind you why are we looking for it if we find the transformation for which the left-hand side and the right-hand side are equal then if x squared equals T squared in other words if the right-hand side is 0 the left-hand side will also be 0 but x squared but x equals T that's the same as something moving with the speed of light in the X frame of reference if this being 0 is equivalent to the left hand side being 0 it says that in both frames of reference the light rays move with the same velocity so that's the basic that's the basic tool that we're using here X prime squared minus T prime squared is equal to x squared minus T squared all right that does follow by a couple of lines using cos squared minus N squared equals 1 but what I want to do let's take another couple of minutes now let's take a break for five minutes and then come back and connect these variables Omega with the velocity of the moving frame of reference somebody asked me a question about the ether and what it was that people were thinking somehow Einstein never got trapped into this mode of thinking um well what were they thinking about when they were thinking about the ether what exactly was the michelson-morley experiment well I'll just spend the minute or two mentioning it certainly Maxwell understood that his equations were not consistent with with Newtonian relativity he understood that but his image of what was going on is that the propagation of light was very similar to the propagation of sound in a material or water waves propagating on water and of course it is true that if you move relative to the atmosphere or move relative to the substance that sound is propagating in you'll see sound move with different velocities depending on your motion if you're at rest in a gas of material isn't there's a natural sense in which is a particular rest frame the rest frame is the frame in which on the average the molecules have zero velocity if you're in that reference frame then first of all light has the same velocity that way as that way number one and it has a velocity that's determined by the properties of the fluid that the sound is moving in okay Maxwell more or less thought that light was the same kind of thing that there was a material and the material had a rest frame and that particular rest frame was the frame in which light would move with the same velocity to the left as to the right and he thought that he was working out the mechanics or the behavior of this particular material and that we were pretty much at rest relative to this material and that's why we saw light moving the same way to the left of the right one would have to say then that Maxwell did not believe that his equations were a universal set of laws of physics but that they would change when you moved from frame to frame just happened by some luck we happen to be more or less at rest relative to the ether to this strange material um of course you could do an experiment with sound if you're moving through the sound you can check that the velocity in different directions is different you do let's not worry exactly how you do that that's what the Michelson Morley experiment was Michelson and Morley I suppose said look the earth is going around in an orbit maybe at one season of the year we just happen to be at rest relative to the ether by accident and some other season six months later we're going to be moving in the opposite direction and we won't well we won't be at rest only at one point in the orbit could we be at rest relative the–this or at any other point in the orbit we wouldn't be so if we measure in November that light moves the same than all possible directions then in what's what's the opposite of November May then in May we should find that light is moving with great with the different velocities in different directions and he tried it and a very fancy and sophisticated way of measuring the relative velocity in different directions but he found that there was no discrepancy that the light traveled the same velocity in every direction at every time of year there were all sorts of ways to try to rescue the ether but none of them worked none of them work and the result was one had to somehow get into the heart of space and time and velocity and mid distance and all those things in a much deeper way in a way that didn't involve the idea of a material at rest in some frame of reference that that propagated the light okay oh where are we I forgotten where we were when we stopped somebody remind me whoo-hah Omega yeah what is Omega forgotten Omega Oh how Omega is really metal speed of light but to the velocity of the moving reference frame here we have two reference frames X T and X Prime and T prime what's the relationship between them well the whole goal here was to understand the relationship between frames of reference moving with relative velocity between them Omega is not exactly the relative velocity but it is closely related to it okay let's say let's see if we can work out the relationship we know enough to do it let's see if we can work out the relationship between Omega and the velocity of the moving frame all right again let's go back to this picture there's a frame of reference moving let's redraw it here's my origin moving along okay what does it mean to say that from your perspective my frame of reference so my origin is moving with velocity V well by definition this is not a law now this is a definition and says that this line here has the equation x equals VT that's the definition of this V here my origin moves relative to your origin it moves with a uniform constant velocity that's an assumption that we're talking about two inertial frames of reference and you in your frame of reference will write x equals VT that's the definition of V if you like what will I call it I will call it X prime equals zero all along there I will say X prime is equal to zero it's my origin of coordinates okay now let's come to this transformation law here and see if we can spot how to identify V well X prime equals zero that's this trajectory moving at an angle with a velocity V X prime equals zero is the same as saying X cos Omega equals T sin Omega X prime equals zero set this side equal to zero and that says that X cos Omega equals T sin Omega all right so whatever the connection between velocity and Omega is it must be such that when X prime is equal to zero X cos Omega equals T sin Omega well let's look at that equation it also says that X is equal to sin CH Omega over cos Omega times T well that's interesting because it's also supposed to be equivalent to x equals VT now I know exactly how to identify what the velocity is as a function of Omega the velocity of the moving transformation the moving coordinate system must just be sin Chi Omega over cos Omega that's the only way these two equations can be the same x equals VT x equals sin Chi Omega over cos Omega times T so now we know it we know what the relationship between velocity and Omega is write it down the velocity of the moving frame now this is not the velocity of light it's just the velocity of the moving frame must just be cinch Omega over cos omega well actually i want to invert this relationship i want to find sin and cos omega in terms of the velocity i want to rewrite these Lorentz transformations where are they i want to rewrite these Lorentz transformations in terms of the velocity that's the familiar form in which you learn about it in in elementary relativity books X prime is equal to something with velocities in it to exhibit that all we have to do is to find Cinch and cosh Omega in terms of the velocity that's not very hard let's let's work it out the first step is to square it and to write V squared is equal to cinch Omega squared over cosh Omega squared that was easy next I'm going to get rid of since Omega squared and substitute where is it I lost it one is equal to cos Omega squared minus cinch Omega squared alright so wherever I see cinch Omega squared I can substitute from here namely cosh squared Omega minus one is equal to sine squared Omega so here we are this is just equal to hash of Omega squared minus one divided by cost of Omega squared or let's multiply by what I want to do is solve for cost Omega in terms of velocity I want to get rid of all these cautions and cinches of Omega and rewrite it in terms of velocity so first x cost Omega squared we have cosh squared Omega times V squared equals cosh squared Omega minus one or it looks to me like this is cosh squared Omega times one minus V squared equals one what I've done is transpose yeah cos squared times V squared minus cos squared itself that gives you cos squared 1 minus V squared equals 1 change the sign can everybody see that the second line follows from the first I'll give you a second yeah yeah yeah it's clear ok finally we get that cos Omega is equal to 1 divided by 1 minus V squared but now I have to take the square root cos Omega / one minus V squared and then take the square root and that gives you cos Omega now we've all seen these square roots of 1 minus V squared in relativity formulas here's where it begins the kayne we begin to see it materializing what about sin Chi Omega let's also write down sin Chi Omega well from here we see that sin Chi Omega is just equal to V times cos Omega this is easy since Omega equals V times cos Omega sorrow sin Chi Omega is V divided by square root of 1 minus V squared let's go back to these Lorentz transformations over here and write them getting rid of the trigonometric functions the hyperbolic trigonometric functions and substituting good old familiar velocities let's get rid of this and substitute the good old ordinary velocities ok so we have here X prime equals x times cos Omega and that's divided by square root of 1 minus V squared then this minus T times sin Omega which is V over the square root of 1 minus V squared or if I put the two of them together and combine them over the same denominator it's just X minus VT divided by square root of 1 minus V squared I think most of you have probably seen that before maybe slightly different let's let's clean it up a little bit X prime equals X minus VT divided by the square root of 1 minus V squared what about T prime T Prime is equal to t minus V X over square root of 1 minus V squared T prime is equal to T times cos cost is just 1 over square root and then x times sin CH that gives us the extra V in other words the formulas are more or less symmetrical and those are all good old Lorentz transformations now what's missing is the speed of light let's put back the speed of light the put back the speed of light is an exercise in dimensional analysis there's only one possible way the speed of light can fit into these equations they have to be modified so that they're dimensionally correct first of all one is dimensionless has no dimensions it's just one velocity is not dimensionless unless of course we use dimensionless notation for it but if velocity is measured in meters per second then it's not dimensionless how do we make V squared dimensionless we divide it by the square of the speed of light in other words this V squared which is here which has been defined in units in which the speed of light is 1 has to be replaced by V squared over C squared likewise over here V squared over C squared now velocity times time does have notice first of all the left hand side has units of length the right hand side this is dimensionless X has units of length but so does velocity times time so this is okay this is dimensionally consistent as it is but over here it's not the left hand side has dimensions of time that's all right 1 minus V squared over C square that's dimensionless this has units of time but what about velocity times X velocity times X does not have units of time in order the given units of time you have to divide it by C square okay let's check that velocity is length all the time times length divided by C squared that's length square R which gets correct but it's correct all right this is probably familiar to most of you who've seen relativity once or twice before these are the equations relating to different moving coordinate systems moving relative to the x axis but you see the deep mathematics or the mathematical structure of it in many ways is best reflected by this kind of hyperbolic geometry here and you know most physicists by now never write down the Lorentz transformations in this form much more likely to write them in this form easier to manipulate easier to use trigonometry or or hyperbolic trigonometry it's a little exercise it's a nice little exercise to use this the hyperbolic trigonometry to compute their to compute the compounding of two Lorentz transformations if frame two is moving relative to frame one with velocity V and frame three Israel moving relative to two with velocity V Prime how is three moving relative to one the answer is very simple in terms of hyperbolic angles you add the hyperbolic angles not the velocities but the hyperbolic angles the hyperbolic angle of three moving relative to one is the hyperbolic angle of three moving relative to two plus two moving relative to one and then you use a bit of trigonometry or hyperbolic trigonometry to figure out how you do the inches and kosh's of the sum of 2 hyperbolic angles very straightforward and I'll leave it as an exercise to see if you can work that out much easier than anything else ok so there there we have the Lorentz transformations yeah oh oh absolutely yes that's that's that's a good point yeah when we that's right if we have frame 1 let's call this x1 and y1 x2 and y2 and finally x3 and y3 well then the angle of – let's call F of 3 relative to 1 let's call it theta 1 3 is just equal to theta 1 2 plus theta 2 3 the angle connecting frame one with frame 3 is just the sum of the angle theta 1 2 plus theta 2 3 so in that respect the Lorentz transformations are much simpler in terms of the Omegas it's the Omegas which combined together to add when you add velocities now how different is omega from the velocity let's work in units in which the speed of light is equal to 1 where is our formula for velocity all right let's take this formula over here what a cinch Omega 4 small Omega let's put the C squared there a let's not put the C square there or not put the C square there since Omega is essentially Omega when Omega is small just like sine is omega where is theta when theta is small the cinch function the cost function looks like like this the cinch function looks like this but it but it crosses the axis with a slope of 1 for small Omega cinch Omega is proportional to Omega for small velocity one minus V squared is very close to 1 if the velocity is a hundredth of the speed of light then this to within one ten-thousandth is just 1 if we're talking about velocities a millionth of the speed of light then this is very close to 1 and so since Omega and velocity are very close to each other it's what's going on here Thanks okay so for small velocities Omega and velocity are the same the actual correct statement is that V over C is like Omega the dimensionless velocity over the speed of light is like Omega for small Omega and small velocity so for small velocity adding velocities and adding omegas are the same things but when the velocities get large the right way to combine them to find relationships between different frames is by adding Omega and not adding velocities when you add Omega like compounding velocities as you've got it there I guess you won't go greater than 45 degrees that guess because that would be faster than light no but Omega no more you see this bit the speed of light is V equals one that corresponds to Omega equals infinity yeah yeah so Omega Omega runs over the whole range from minus infinity to infinity but when it does V goes from minus the speed of light to the speed of light so you can add any omegas and still add any omegas Omega that's right there's no there's no speed limit on Omega is this like we just go on that diagram it looks like it's greater than 45 degrees if here where where I make a and I guess they use the definition of state along the hyperbola yeah that's right sorry where are we right there today I guess that's theta though isn't it this is Theta that's a good oh god yeah right right yeah Omega is the distance along hyperbola that's right distances that's right Omega is a kind of distance along the hyperbola all right now let's let's talk about that a little bit all right now that we've established the basic mathematics structure of the transformations I think we should go back and talk about some simple relativity phenomena and derive them oh one thing which is important which I yeah well let's see we're here are my Lorentz transformations over here I said we should we ought to at the end make sure that our transformations are not too dissimilar from Newton's in particular when the velocities are small they should reduce to Newton that's all we really know that's or at least that's all that Newton really had a right to assume that when the velocities are smaller than something or other that his equations should be good approximations isn't adding velocity good enough isn't velocities adding good enough in fact you're right in fact you're right but let's just look at the transformations themselves all right as long as the velocity is a small percentage of the speed of light an ordinary velocities are what a hundred miles an hour versus 186,000 miles an hour what is that it's small right and it's doubly small when you square it so for typical ordinary velocities even the velocities of the earth around the Sun and so forth fairly large velocities what 60 kilometers per second or something like that 60 kilometers per second is pretty fast that's the that's the orbital earth around the Sun it's pretty fast but it's nowhere near 300,000 kilometers per No yeah looks here on a thousand meters per second we're I'm sorry three times ten to the eighth no three times three hundred thousand kilometers per second right 60 kilometers per second three hundred thousand kilometers per second small fraction and then square it so for ordinary motions this is so close to one that the deviation from one is negligible so let's start with the top equation for the top equation this is negligible and it's just x prime equals X minus VT the bottom equation here you have a C squared in the denominator whenever you have a C squared in the denominator that's a very very large thing in the denominator this is negligible compared to T so here the speed of light is also in the denominator just forget this and it's just T but it's just T prime equals T it's just D prime equals T so in fact Newton's formulas are essentially correct for slow velocities no no significant departure from Newton until the velocities get up to be some some appreciable fraction of the speed of light okay let's talk about proper time proper time and then let's do a couple of relativity examples yeah question the bottom equation when X is very large yes that's right when X is exceedingly large you get a correction but that correction that X has to be very large look let's let's discuss before we do anything else let's let's let's talk about that a little bit X minus VT one minus V squared over C squared yeah let's alright in my drawings I'm going to sitt C equal to one but in the equations you can leave the C there okay this equation we understand apart from this one minus V squared over C squared in the denominator it's just this x equals V T or X minus V X minus X minus VT that's Newton let's look at this one over here okay let's look at the surface T prime equals zero T prime equals zero is the set of points that I in my moving reference frame call T call time equals zero it's what I call the set of points which are all simultaneous with the origin T prime equals zero is just everyplace in space-time which has exactly the same time according to my frame of reference and I will therefore call all those points synchronous at the same time what do you say about them if T prime is equal to zero that says that T is equal to V over C squared X now let's set C equal to one for the purpose of drawing just for the purpose of drawing I don't want this huge number C squared to distort my drawings too much it says the T equals V X what does the surface T equals V X look like it looks like this T equals V X which is also X is equal to 1 over V T so it's just a uniform line like that all of these points are at different times from your reckoning this ones later this ones later this ones later and so forth according to my reckoning all these points are at the same time so we disagree about what's simultaneous this was this was the hang-up incidentally this was the basic hang-up that took so long to overcome that took Einstein to overcome it the idea that simultaneity was the same in every reference frame nobody in fact it was so obvious that nobody even thought to ask a question is simultaneous does it mean the same thing in every reference frame no it doesn't in more in your reference frame the horizontal points are all simultaneous with respect to each other in my reference frame what I call horizontal what I call simultaneous you do not okay so simultaneity had to go let me point out one more thing about these equations I'm not going to solve them for you but I will tell you the solution anyway how do you solve for X and T in terms of X Prime and T Prime well think about it in the case of angles supposing I have a relationship like X prime is equal to X cosine theta what is it plus plus y sine theta and y prime is equal to X minus X sine theta plus or Y cosine theta and supposing I want to solve for x and y in terms of X Prime and Y Prime you know what the solution is just change theta 2 minus theta and write that X is equal to X prime cosine of minus theta but what's cosine of minus theta right cosine theta plus y sine of minus theta what's sine of minus theta minus sine theta times y and likewise for y prime Y prime is equal to minus x times sine of minus theta so that becomes plus X sine theta plus y cosine of minus theta which is cosine theta you don't have to go through the business of solving the equations you know that if one set of axes is related to the other by rotation by angle theta the second one is related to the first one or vice versa the first one is related to the second one by the negative of the angle if to go from one frame to another you rotate by angle theta and to go from the second frame back to the first you rotate by angle minus theta so you just write down exactly the same equations interchange Prime and unprimed and substitute for theta minus theta same thing for the Lorentz transformations exactly the same thing if you want to solve these for X and T write down the same equations replace primed by unprimed and change the sign of omegas to minus the sines of omegas change sinus rgn of all the sign all the cinches okay in other words just send Omega 2 minus Omega and that will solve the equations in the other direction yeah yes it's also the same as changing V 2 minus V yes the way to see that is to go right what was it what do we have cosh Omega yep yeah that's right via sign yes that was correct yeah you just well you change Omega 2 minus Omega it has the action of changing V 2 minus V you can just check that from the equations good alright let's let's talk about proper time a little bit proper time if you're doing ordinary geometry you can measure the length along a curve for example and the way you do it is you take a tape measure and you you know sort of take off you take off equal intervals equal equal little separations you can think of these separations as differential distances DS squared small little differential distances and that differential distance is d x squared plus dy squared with the x squared and the y squared are just the differential increments in x and y DX and dy this is d s alright so that's the way and you add them up you add them up that's the way you compute distances along curves it's quite obvious that if you take two points the distance between those two points depends on what curve not the same for every curve so I'll measure the longer curve you have to know not only the two points but you have to know the curve in order to say what the distance between those points are of course the distance between its longer straight line that's that's well-defined but the distance along a curve depends on the curve in any case D s squared equals the x squared plus dy squared is the basic defining notion of distance between two neighboring points if you know the distance between any two neighboring points in a geometry you basically know that geometry almost essentially completely so given this formula for the distance between two points you can compute if you like the distance along a curve because you've got to take the square root of this and then add them up don't anhedonia the squares add the differential distances all right the important thing is here that square root of DX squared plus dy squared which is the distance between neighboring points doesn't depend on your choice of axes I could choose X Y axes I could choose X prime y prime axes if I take a little differential displacement the X and the y or I just take two points two neighboring points don't even give them labels and measure the distance between them the distance between them should not depend on conventions such as which axes are used and so when I make rotational transformations the X square plus dy squared doesn't change the X and the y may change but the x squared plus dy squared does not change the same thing is true in relativity or the analogous thing we don't measure distances along the paths of particles let's say now that this curve here is the path of a particle moving through space-time there's a particle moving through space-time and we want some notion of the distance along it the notion of distance along it another example would just be a particle standing still as a particle standing still particle standing still is still in some sense moving in time I wouldn't want to say that the distance between these two points and space-time is zero they're not the same point I wouldn't like to say it's zero I would like to say there's some kind of notion of distance between them but it's quite clear that that distance is not measured with a tape measure this point and this point are the same point of space boom here at this point of space and that at a later time boom again at the same point of space two events at the same point of space how do I characterize and some nice way the distance between those two events that occurred in the same place you don't do it with a tape measure all right what do you do with a clock a clock you take a clock and you start it at this point tic tic tic tic tic tic tic a stopwatch you press it at this point tic tic tic tic tic it picks off intervals and then you stop it at that point and you see how much time has evolved that's a notion of distance along a particle trajectory it's not the distance the particle moves in space it's a kind of distance that it's moved through space-time and it's not zero even if the particle is moving standing perfectly still in fact what it is is it's the time along the trajectory what about a moving particle well you can imagine that a moving particle carries a clock with it of course not all particles carry clocks but we can imagine they carry clocks with them as they move and we can start the clock over here and then the clock over here what is the time read off by this moving clock the time read off by a moving clock is much like the distance along a curve measured by a tape measure in particular it should not depend on the choice of coordinates why not this is a question that has nothing to do with coordinates I have a clock made in the standard clock Factory the standard clock Factory and I don't know we're in Switzerland someplace makes a certain kind of clock that clock gets carried along with a particle and we ask how much time evolves or how much time elapses or how much the clock changes between here and here that should not depend on a choice of coordinates it shouldn't depend on a choice of coordinates because it's a physical question that only involves looking at the hands of the clock in fact we can ask it for little intervals along along the trajectory we could ask how much time elapses according to the clock between here and here well the answer again should not depend on what coordinates you use which Lorentz frame you use and there's only one invariant quantity that you can make out of the D X's and DTS describing this point describing these two points there's a little interval DT and there's a little interval DX now we're in space and time not ordinary not ordinary space and the quantity which is invariant there's really only one invariant quantity that you can make out of it it is DT squared minus DX squared it's the same quantity x squared minus T squared for a whole you know for a whole interval the T squared minus DX squared that's the quantity which is invariant it's minus D it's the negative of what I wrote over here x squared minus T squared okay this quantity is equal to the X prime squared minus DT power sorry DT prime squared minus the X prime squared the same algebra goes into this as goes into showing that X prime squared minus T prime squared equals x squared minus T squared incidentally this is the same as saying T prime squared minus X prime squared equals T squared minus x squared doesn't matter which way you write it all right so that suggests that suggests that the time read off the invariant time read off along a trajectory between two points separated by DX and DT is just the square root of DT squared minus DX squared why the square-root incidentally okay you're going to integrate in detail I can integrate DT yeah well alright why not just DT square minus the x squared for the time between here and here is it here's an answer supposing we go to you two intervals exactly the same as the first one we go an interval over here DX and DT and then we go another DX in DT what happens when we double the interval to DT squared minus DX squared it gets multiplied by four because everything is squared well I wouldn't expect a clock when it goes along you know when it goes along a trajectory for twice the the interval here to measure four times the the time I expected to measure twice the time so for that reason the square root is the appropriate thing here okay that's called D tau squared the tau squared the proper time along the trajectory of an object you're right that's just the towel or D tau squared being the x squared minus DT squared the Tau is called the proper time let's go I think we'll let's see the towel is called the proper time and it is the time read by a clock moving along a trajectory it's not just DT that's the important thing it's not just DT the T squared minus the x squared let's do one last thing let's just do the twin paradox in this language I think I think I've had it I'm going to finish you can do the twin paradox in this language all you have to do is to compute the proper time along two trajectories one that goes out with a uniform velocity turns around and comes back with the same uniform velocity versa a trajectory which just goes from one point to the st. the another point along a straight line and it's no more weird it's no weirder really from this perspective than saying the distance from one point to another along two different curves do not have to agree the proper time along two different curves in general will not agree what is a little bit weird is that because of this minus sign the proper time this way is less than the proper time this way that's the consequence of this minus sign here moving with some DX decreases the proper time all right we'll do a little bit more next time but then I want to get to the principles of field theory and and connect some of this with field equations for interesting wave fields the preceding program is copyrighted by Stanford University please visit us at stanford.edu

Why sin and cos don't mean anything

Views:633801|Rating:4.70|View Time:7:48Minutes|Likes:24069|Dislikes:1521
Get better at maths with Brilliant:

An excellent summary of this story (found after I did all the research, annoyingly!) can be found here:

So, yes, the title is, rather than trigonometric, slightly hyperbolic. Sin and cos are a corruption of the word sinus, and so do have a lexical root and broader meaning. But the point I’m trying to make here is that there is no connection between the word sinus and what the functions actually correspond to. Any true meaning was lost in the successive translations and transliterations from sanskrit. So while sin and cos do have /a/ meaning, I guess what I’m saying is that they don’t have a /meaningful/ meaning.

Also I apologise for any pronunciation mistakes in this. I’m a scientist, not a linguist! Also also yes I’m aware that there are differences between Persian (in various stages) and Arabic.

You can support the channel by donating at

———- II ———-

Filmed on my Canon 80D:
Editing done in Premiere. Music by ProleteR – Back Home.

Huge thanks to my supporters on Patreon: Dan Hanvey, Logan McGillivray, David Efird, Cameron Matchett, Lachlan Woods, Tim Boxall, Simon Vaes, Gabriele Mozzicato, Jawad Alalasi, Gaia Frazao Nery, Kodzo, Josh Ruby, Claire Anthony, Eve Dillon, Rowan Gow, Matthias Loos, James Bridges, James Craig, Angela, Sanaa Al Derei, Mark Anthony Magro, Liam, Theresa Wang, Hunter Jones, Nathan Smith, Kieran Kelly, Kendra Johnson, Wendover Productions, Caitlin Louise, Real Engineering, Rhys Rickard-Frost, and Katy P.

———- II ———-

I am Simon, a PhD candidate at the University of Exeter who’s about to sit his viva. I upload videos on bits of science which are relevant to what I do, and sometimes just because they’re really cool.

Vlogs from Oxford students –
My twitter –
My facebook –
My insta –
My goodreads –

هذه حلوى (كاندي). سُميت كذلك لأن أصلها من الهند، حيث اُنتج السكر لأول مرة من قصب السكر في القرن الرابع الميلادي تقريبًا، وكانت يشار إلى قطعة الحلوى بكلمة قندا (खण्ड) بالسنسكريتية *سيمون يضع الحلوى في فمه* وبعدما انتشرت زراعة وانتاج السكر إلى الغرب عبر ما سُميت حينئذٍ بلاد فارس في وقت ما من القرن السادس، استخدمت الكلمة للإشارة إلى عملية تغطية شيء ما بدبس السكر وأصبحت (قَنْدِيّ) باللغة العربية وبعد أن شقت هذه المعرفة طريقها إلى أوروبا، حصلنا على الكلمة الإنجليزية (candy) في وقت ما من القرن الثالث عشر. "علم التأصيل" ، أو دراسة أصول الكلمات، بإمكانه إظهار حقيقة كيف حصلنا على على شيءٍ ما أو من أين جاءت فكرة ما في هذا العالم. لكن، وعلى عكس كلمة candy، فإن كلمات مثل 'sin' و'cos' غير ذات معنى، والسبب وراء ذلك يكمن في قصة حياة هاتين الكلمتين إذا رجعنا إلى بداية الأمر، نجد أن مفهوم الـ'sin' نشأ في حقبة امبراطورية جوبتا حوالي القرن الرابع أو الخامس الميلادي. فيما سبق، اهتم علماؤ الرياضيات الإغريق بالعلاقة بين طول الوتر -ذلك الخط الواصل بين أي نقطتين على محيط الدائرة- والزاوية المقابلة له والتي رأسها مركز الدائرة. لكن الذين ألفو كتاب "السد هانتا" -أحد أهم النصوص الرياضية في الهند قديمًا- اهتموا بالعلاقة بين نصف طول الوتر، ونصف طول الزاوية المقابلة له. وهذا مرتبط مباشرة بالمفهوم الحديث للـ'sin'. فإذا كان لدائرة نصف قطر 1، عندها يكون طول الوتر هو sin(x) حيث x هي نصف الزاوية المقابلة للوتر. باللغة السنسكريتية. والتي كانت اللغة المقدسة في الهند آنذاك, كان الوتر يسمى (جيا) والذي يعني (وتر القوس). وهو شيئ سهل الملاحظة, إذ أن الوتر يشبه وتر القوس إذا كان ما تبقى من الدائرة يكون ما يشبه القوس وأحد المرادفات المشهورة لكلمة (جيا) وقتئذ كانت (جيفا) , والتي انتهى بها المطاف بإن يتم استعمالها للإشارة إلى كل من الوتر , وكذلك الى ما يعرف الآن بالـ (sin) علماء الرياضيات في عهد غوبتا في الهند قامو بتعريف اثنين من المفاهيم الضخمة التي نستخدمها حالياً بشكل دائم في الرياضيات اولهما الـsin , كما رأينا سابقاً , وثانيهما طريقة كتابة الارقام في حد ذاتها تقريبا في نفس الوقت الذي اخترعت فيه الـ sin , تم اختراع النظام العشري في كتابة الارقام حيث يكون كل خانة من الأرقام أكبر من 10 أضعاف الخانة السابقة. وقد حل ذلك محل النظم السابقة التي كانت غير عملية بشكل كافي ، مثل نظام العد الستيني حيث كانت كل خانة أكبر بستين مرة من سابقتها. ليس من قبيل المبالغة أن نقول إن علماء الرياضيات في عهد غوبتا في الهند قد قامو فعلا بوضع المفاهيم التي نستند عليها حالياً في فهمنا للرياضيات. ولكن تلك الأفكار كان عليها أن تصل من الهند إلى أوروبا، حيث انتهى بها المطاف ان تتطور إلى النظام الرياضي الذي نستخدمه اليوم. وبسبب الرحلة التي خاضتها هذه الافكار حصلنا على هذبن الإسمين , sin و cos تماما كما هو الحال مع "الحلوى"، في أثناء انتشار فكرة الـ sin من لهند إلى ما كان يعرف وقتها ببلاد فارس، الكلمة المستخدمة للإشارة إليها تم ترجمتها حرفياً من السنسكريتية إلى العربية لأنه لم يوجد مسبقاُ مرادف مباشر لهذه الكلمة لذلك، "جيفا" (जीव) أصبحت "جيبا" . الآن هذه النقطة مهمة جداً … لأن خطأً كبيراً على وشك أن يحدث لأنه في اللغة العربية، يمكن اختصار الكلمات عن طريق حذف أحرف العلة القصيرة. وعلى هذا النحو، للتسهيل عند الكتابة، كلمة "جيبا" أصبحت "جب" ولكن هذا مفهوم فقط إذا كنت تعرف ما كان عليه الاختصار بالكامل في المقام الأول. لأنه يمكن أن يوضع هناك أي حروف العلة القصيرة بين الحروف الساكنة المتبقية. عادة، بالطبع، هذه ليست مشكلة. إذا كنت تتحدث العربية، وكنت على دراية بما اعتاد ان يفعله العرب بحروف العلة، فإنه يمكنك استرجاع حروف العلة الأصلية. ولكن عندما بدأ الأوروبيون الغربيون في ترجمة كتب الرياضيات التي كتبها العرب في القرن الثاني عشر، في إثناء "زيادة الاتصالات" بين الثقافتين، كان هناك مشكلة. لم تكن أوروبا تفكر كثيرا في الرياضيات في الماضي … فلنقل، ما يقرب من 1000 سنة، بدلا من ذلك قامو يالتركيز على قضايا مثل الخلاص، أو من هو الخليفة للإمبراطورية الرومانية لذلك، عندما استولو على النصوص العربية، التي قامت ببراعة بتطوير العلوم التي وصل إليها اليونانيون القدماء و علماء الرياضيات الهنود، بدأوا بترجمتها بحماس، قامو بترجمتها إلى لاتينية العصور الوسطى ،و التي كانت لغة الرياضيات في ذلك الوقت. أحد هؤلاء المترجمين،والذي لم يتم الاتفاق على شخصيته ، ولكن ربما كان روبرت بن تشيستر (الذي، بالمناسبة، كان أول شخص ترجم القرآن إلى اللاتينية)، أو جيرار بن كريمونا، وقع بين يديهما كتاب يسمى باللغة العربية "الكتاب المختصر في حساب الجبر والمقابلة‎" (من تأليف الخوارزمي). وضمن هذا الكتاب كانت جداول تحتوي قيم sin للزاوية، ويشار إليها باسم "جب" ولكن المترجم، أيا كان، لم يدرك أن ذلك كان اختصاراً لكلمة "جيبا" . وبدلا من ذلك فسرت على أن المقصود به هو كلمة Jayb , (جيب) لذلك، ترجم "جب" من اللغة العربية إلى "sinus" باللغة اللاتينية، وهي كلمة تعني "جيب الصدر" أو "جراب" أو "تجويف" (بالمناسبة، الجيوب الأنفية في رأسك تسمى بهذا الاسم : لأنها حرفيا عبارة عن تجاويف من الهواء في جمجمتك). وهذا الاسم ظل كما هو في اللغة اللاتينية، التي ظلت لغة الرياضيات لقرون, إلى أن قام علماء الرياضيات، وعلى وجه الخصوص أويلر [ليونارد أويلر] بتوحيد طريقة كتابة sin اختصاراً لكلمة sinus و cos للدوال المثلثية. 'cos'، بالمناسبة، هي اختصار لكلمة 'cosign'، أو كما تكتب كاملة باللاتينية باللاتينية complimenti sinus, وتعني الشيء الذي يختلف عن ال sin ولكن الكلمة التي نستخدمها اليوم -sin- هي تحريف من اللغة الإنجليزية لكلمة لاتينية 'sinus'. لذلك، ككلمة في حد ذاتها, فإنها معناها فقط من الناحية الرياضية. ببساطة , هي لم تكن موجودة حتى بدأت الرياضيون الإنجليز باستخدام الدالة اللاتينية "sinus" في وقت ما من القرن ال 16. لذلك ربما أنه من المناسب ، أنه بعد قرون من التاريخ وترجمة ملتوية إلى اللاتينية، أن أول شخص تم تسجيل انه استخدم كلمة 'sin' باللغة الإنجليزية … كان يسمى توماس فايل (ملاحظة: لقب الشخص ينطق ككلمة fail
والتي تعني فشل) لذلك في المرة القادمة عندما تجد نفسك عالقاُ في اختبار حساب المثلثات. وتجد نفسك تحدق بلا أمل في الأسئلة أمامك، لعلك تجد بعض السلوى عندما تعلم ان الذين أطلقو اسم الـ sin والـ cos على هذه الأشياء كانو أصلاً يهرفون بما لا يعرفون أما إذا كنت ترغب في التحضير لهذا الاختبار، فإن أفضل طريقة للقيام بذلك هي أن تنخرط بشكل مكثف بحل المسائل التي تطور مهاراتك الرياضية ، وتعطيك فهم عميق للمفاهيم التي في متناول اليد. وأفضل طريقة للقيام بذلك هي من خلال brilliant.org: وهو موقع على شبكة الإنترنت يعزز التعلم من خلال حل المسائل. مرارا وتكرارا، دائما أتعرض للسؤال : "ما هي أفضل طريقة لتحسين مستواي في الرياضيات؟" وجوابي هو نفسه في كل مرة التدريب، التدريب، التدريب! كلما حللت المزيد من المسائل، كلما كان ذلك أفضل. و brilliant.org هو مكان ممتاز للقيام بذلك، حتى لو أجبت إجابة خاطئة، فإن الموقع سيصحح لك خطأك، وسيذكرك انه لا بأس بالخطأ. لأن وقوعك في الخطأ هو جزء من عملية التعلم! على وجه الخصوص، دوراتهم في أساسيات الرياضيات والجبر من خلال الألغاز هي مكان ممتاز لتبدأ منه. … (ولتعلق في بعض المسائل) إذا كنت ترغب في تجريب Brilliant- مجانا – فعليك بالذهاب إلى Brilliant.org/SimonClark، حيث ان أول 200 شخص يضغطون على هذا الرابط سوف يحصلون على تخفيض 20٪ من قسط الاشتراك السنوي، وهذا سيساعدني على زيادة انتشار هذه القناة. شكرا على حسن المشاهدة ! إذا استمتعت بمشاهدة هذا الفيديو، أرجو أن تضغط على زر الاعجاب. إذا لم تكن أحد المشتركين ، فاشترك في القناة، وسأراكم في المرة القادمة! ملاحظة من المترجم : أسد لنفسك معروفاً وشاهد بقية فيديوات سيمون! ستستمتع بالتأكيد